Frequency Downshift in a Viscous Fluid



John D. Carter

carterj1@seattleu.edu

Major Collaborators

- Isabelle Butterfield (Seattle University)
- Alex Govan (Seattle University)
- Diane Henderson (Penn State University)
- Harvey Segur (University of Colorado at Boulder)

Waves I'd Like to Model

Photo from Shawn at Videezy.com.

Modeling waves like those is too difficult for me because of:

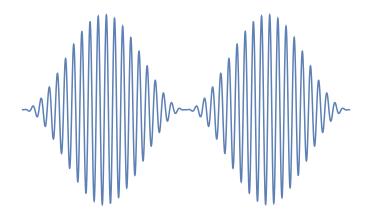
- Wave breaking
- Air trapped in the fluid
- Vorticity
- Wind
- Interactions with the seafloor

▶ ...

Waves I'm Going to Talk About Today

Photo from http://teachersinstitute.yale.edu/curriculum/units/2008/5/08.05.06.x.html.

Waves I'm Going to Talk About Today



Two-dimensional modulated wave trains.

Select Background

Benjamin & Feir (1967) Theory and Experiments

Benjamin-Feir Instability

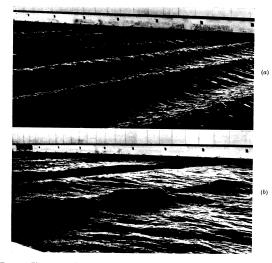
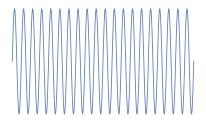


FIGURE 1. Photographs of a progressive wavetrain at two stations, illustrating disintegration due to instability: (a) view near to wavemaker; (b) view at 200 ft. farther from wavemaker. Fundamental wavelength, 7.2 ft.

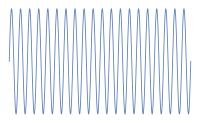
Benjamin-Feir Instability

A time series that initially has the form

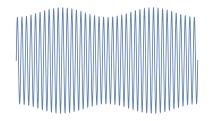


Benjamin-Feir Instability

A time series that initially has the form



will evolve into



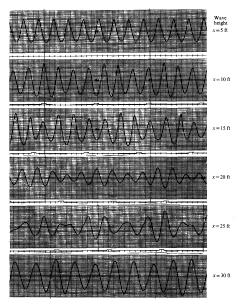
due to the Benjamin-Feir (or modulational) instability.

Frequency Downshift in a Viscous Fluid

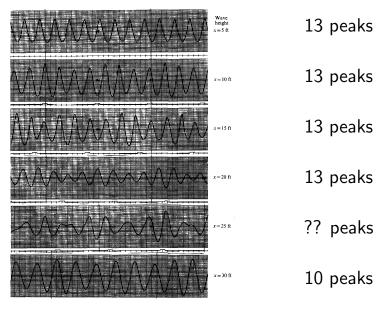
John D. Carter

Yuen, Lake, Rungaldier, & Ferguson (1977) Experiments

Frequency Downshifting



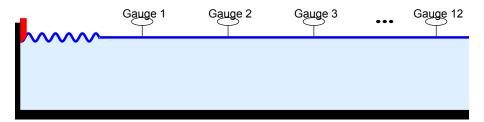
Frequency Downshifting



Segur et al. (2005) Theory and Experiments

Basic Experimental Setup

Figure not to scale!

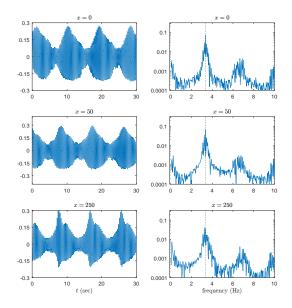


Experiments conducted by Diane Henderson (Penn State University).

Frequency Downshift in a Viscous Fluid John D. Carter

April 26, 2017

Experimental Measurements



The spectral peak, ω_p(x), is defined as the frequency of the Fourier mode with largest magnitude at a location x

- The spectral peak, ω_p(x), is defined as the frequency of the Fourier mode with largest magnitude at a location x
- ► The "mass"

$$\mathcal{M}(x) = \frac{1}{L} \int_0^L |B|^2 dt$$

- The spectral peak, ω_p(x), is defined as the frequency of the Fourier mode with largest magnitude at a location x
- The "mass"

$$\mathcal{M}(x) = \frac{1}{L} \int_0^L |B|^2 dt$$

▶ The "linear momentum"

$$\mathcal{P}(x) = \frac{i}{2L} \int_0^L \left(BB_t^* - B_t B^* \right) dt$$

- The spectral peak, ω_p(x), is defined as the frequency of the Fourier mode with largest magnitude at a location x
- The "mass"

$$\mathcal{M}(x) = \frac{1}{L} \int_0^L |B|^2 dt$$

The "linear momentum"

$$\mathcal{P}(x) = \frac{i}{2L} \int_0^L \left(BB_t^* - B_t B^* \right) dt$$

• The spectral mean, ω_m , is defined by

$$\omega_m(x) = \frac{\mathcal{P}(x)}{\mathcal{M}(x)}$$

- The spectral peak, ω_p(x), is defined as the frequency of the Fourier mode with largest magnitude at a location x
- The "mass"

$$\mathcal{M}(x) = \frac{1}{L} \int_0^L |B|^2 dt$$

The "linear momentum"

$$\mathcal{P}(x) = \frac{i}{2L} \int_0^L \left(BB_t^* - B_t B^* \right) dt$$

• The spectral mean, ω_m , is defined by

$$\omega_m(x) = \frac{\mathcal{P}(x)}{\mathcal{M}(x)}$$

A wave train is said to exhibit frequency downshifting if ω_m or ω_p decreases monotonically as it travels down the tank.

Frequency Downshift

Frequency downshift in both the spectral peak and spectral mean senses.

Frequency Downshift

Frequency downshift in the spectral peak sense.

Segur et al. (2005) showed

 Frequency downshifting (FD) is not observed (in their tank) if the waves have "small or moderate" amplitudes

Segur et al. (2005) showed

- Frequency downshifting (FD) is not observed (in their tank) if the waves have "small or moderate" amplitudes
- FD is observed if the amplitude of the carrier wave is "large" or if the sideband perturbations are "large enough"

Segur et al. (2005) showed

- Frequency downshifting (FD) is not observed (in their tank) if the waves have "small or moderate" amplitudes
- FD is observed if the amplitude of the carrier wave is "large" or if the sideband perturbations are "large enough"
- If FD occurred, then
 - ω_m decreased monotonically
 - FD occurred in the higher harmonics before in the fundamental

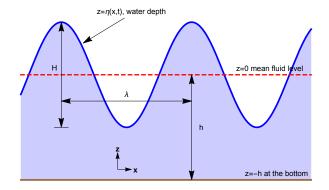
Segur et al. (2005) showed

- Frequency downshifting (FD) is not observed (in their tank) if the waves have "small or moderate" amplitudes
- FD is observed if the amplitude of the carrier wave is "large" or if the sideband perturbations are "large enough"
- If FD occurred, then
 - ω_m decreased monotonically
 - > FD occurred in the higher harmonics before in the fundamental

Our goal is to provide a mathematical justification for these observations without relying on wind or wave breaking effects.

Theoretical Background

Physical System



- $\eta = \eta(x, t)$ represents the surface displacement
- $\phi = \phi(x, z, t)$ represents the velocity potential

Governing Equations

The equations for a two-dimensional, infinitely deep, inviscid, irrotational, incompressible fluid are

$$\phi_{xx} + \phi_{zz} = 0$$
, for $-\infty < z < \eta(x, t)$

$$\eta_t + \phi_x \eta_x - \phi_z = 0, \quad \text{for} \quad z = \eta(x, t)$$

 $\phi_t + g\eta + \frac{1}{2}(\phi_x^2 + \phi_z^2) = 0, \quad \text{for} \quad z = \eta(x, t)$

$$\phi_z
ightarrow 0$$
, as $z
ightarrow -\infty$

Approximate Models

In 1966, Zakharov assumed

$$\eta(x,t) = \epsilon B e^{ik_0 x - i\omega_0 t} + \epsilon^2 B_2 e^{2(ik_0 x - i\omega_0 t)} + \epsilon^3 B_3 e^{3(ik_0 x - i\omega_0 t)} + \dots + c.c.$$

 $\phi(x,z,t) = \epsilon A_1 e^{k_0 z + i k_0 x - i \omega_0 t} + \epsilon^2 A_2 e^{2(k_0 z + i k_0 x - i \omega_0 t)} + \epsilon^3 A_3 e^{3(k_0 z + i k_0 x - i \omega_0 t)} + \dots + c.c.$

in order to study the evolution of modulated wave trains.

Approximate Models

In 1966, Zakharov assumed

$$\eta(x,t) = \epsilon B e^{ik_0 x - i\omega_0 t} + \epsilon^2 B_2 e^{2(ik_0 x - i\omega_0 t)} + \epsilon^3 B_3 e^{3(ik_0 x - i\omega_0 t)} + \dots + c.c.$$

 $\phi(x,z,t) = \epsilon A_1 e^{k_0 z + i k_0 x - i \omega_0 t} + \epsilon^2 A_2 e^{2(k_0 z + i k_0 x - i \omega_0 t)} + \epsilon^3 A_3 e^{3(k_0 z + i k_0 x - i \omega_0 t)} + \dots + c.c.$

in order to study the evolution of modulated wave trains. Here

- $\epsilon = 2|a_0|k_0 \ll 1$ is the dimensionless wave steepness
- ► *a*⁰ represents a typical amplitude
- ▶ *k*⁰ represents the wave number of the carrier wave
- ω_0 represents the frequency of the carrier wave
- The A's depend on $X = \epsilon x$, $Z = \epsilon z$, and $T = \epsilon t$
- The B's depend on X and T
- c.c. stands for complex conjugate

NLS Equation

This led to the nonlinear Schrödinger (NLS) equation

$$2i\omega_0\left(B_T + \frac{g}{2\omega_0}B_X\right) + \epsilon\left(\frac{g}{4k_0}B_{XX} + 4gk_0^3|B|^2B\right) = 0$$

where

$$\omega_0^2 = gk_0$$

NLS Equation

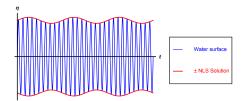
This led to the nonlinear Schrödinger (NLS) equation

$$2i\omega_0\left(B_T + \frac{g}{2\omega_0}B_X\right) + \epsilon\left(\frac{g}{4k_0}B_{XX} + 4gk_0^3|B|^2B\right) = 0$$

where

$$\omega_0^2 = gk_0$$

B models the evolution of the red curves (the "envelope").



NLS Equation

The nonlinear Schrödinger (NLS) equation

$$2i\omega_0\left(B_T + \frac{g}{2\omega_0}B_X\right) + \epsilon\left(\frac{g}{4k_0}B_{XX} + 4gk_0^3|B|^2B\right) = 0$$

Properties

- ▶ NLS preserves mass, M
- NLS preserves linear momentum, ${\cal P}$
- NLS preserves the spectral mean, ω_m

Dysthe System

In 1979, Dysthe generalized Zakharov's work by assuming

 $\eta(\mathbf{x},t) = \epsilon^3 \overline{\eta} + \epsilon B \mathbf{e}^{ik_0 \mathbf{x} - i\omega_0 t} + \epsilon^2 B_2 \mathbf{e}^{2(ik_0 \mathbf{x} - i\omega_0 t)} + \epsilon^3 B_3 \mathbf{e}^{3(ik_0 \mathbf{x} - i\omega_0 t)} + \dots + c.c.$ $\phi(\mathbf{x},\mathbf{z},t) = \epsilon^2 \overline{\phi} + \epsilon A_1 \mathbf{e}^{k_0 \mathbf{z} + ik_0 \mathbf{x} - i\omega_0 t} + \epsilon^2 A_2 \mathbf{e}^{2(k_0 \mathbf{z} + ik_0 \mathbf{x} - i\omega_0 t)} + \epsilon^3 A_3 \mathbf{e}^{3(k_0 \mathbf{z} + ik_0 \mathbf{x} - i\omega_0 t)} + \dots + c.c.$

Dysthe System

This led to what is now known as the Dysthe system

$$2i\omega_0 \left(B_T + \frac{g}{2\omega_0} B_X \right) + \epsilon \left(\frac{g}{4k_0} B_{XX} + 4gk_0^3 |B|^2 B \right)$$

+ $\epsilon^2 \left(-i \frac{g}{8k_0^2} B_{XXX} + 2igk_0^2 B^2 B_X^* + 12igk_0^2 |B|^2 B_X + 2k_0 \omega_0 B \bar{\phi}_{0X} \right) = 0, \text{ at } Z = 0$

``

$$\begin{split} \bar{\phi}_{0Z} = & 2\omega_0 \left(|B|^2 \right)_X, \quad \text{at } Z = 0 \\ \bar{\phi}_{0XX} + \bar{\phi}_{0ZZ} = 0, \quad \text{for } -\infty < Z < 0 \\ \bar{\phi}_{0Z} \to 0, \quad \text{as } Z \to -\infty \end{split}$$

Dysthe System

Properties

- The Dysthe system preserves \mathcal{M}
- \blacktriangleright The Dysthe system does not preserve ${\cal P}$
- The Dysthe system does not preserve ω_m

Derivation of the Viscous Dysthe System

Governing Equations with Weak Viscosity

Dias *et al.* (2008) derived a weakly viscous generalization of the Euler equations

$$\phi_{xx} + \phi_{zz} = 0$$
, for $-\infty < z < \eta(x, t)$

$$\eta_t + \phi_x \eta_x - \phi_z = 2\overline{\nu}\eta_{xx}, \quad \text{for} \quad z = \eta(x, t)$$

$$\phi_t + g\eta + \frac{1}{2}(\phi_x^2 + \phi_z^2) = -2\overline{\nu}\phi_{zz}, \quad \text{for} \quad z = \eta(x, t)$$

$$\phi_z
ightarrow 0$$
, as $z
ightarrow -\infty$

Where $\bar{\nu}$ is the kinematic viscosity.

Governing Equations with Weak Viscosity

Wu *et al.* (2006) studied the following ad-hoc dissipative generalization of the Euler equations

$$\phi_{xx} + \phi_{zz} = 0, \quad \text{for} \quad -\infty < z < \eta(x, t)$$

$$\eta_t + \phi_x \eta_x - \phi_z = 0, \quad \text{for} \quad z = \eta(x, t)$$

$$\phi_t + g\eta + \frac{1}{2} (\phi_x^2 + \phi_z^2) = -\beta \phi_{zz}, \quad \text{for} \quad z = \eta(x, t)$$

$$\phi_z
ightarrow 0$$
, as $z
ightarrow -\infty$

Where β is the coefficient of dissipation.

Solution Ansatz

Generalizing the work of Dysthe, assume

 $\eta(\mathbf{x},t) = \epsilon^3 \bar{\eta} + \epsilon B \mathbf{e}^{i\omega_0 t - ik_0 \mathbf{x}} + \epsilon^2 B_2 \mathbf{e}^{2(i\omega_0 t - ik_0 \mathbf{x})} + \epsilon^3 B_3 \mathbf{e}^{3(i\omega_0 t - ik_0 \mathbf{x})} + \dots + c.c.$

 $\phi(x,z,t) = \epsilon^2 \bar{\phi} + \epsilon A_1 e^{k_0 z + i\omega_0 t - ik_0 x} + \epsilon^2 A_2 e^{2(k_0 z + i\omega_0 t - ik_0 x)} + \epsilon^3 A_3 e^{3(k_0 z + i\omega_0 t - ik_0 x)} + \dots + c.c.$

Solution Ansatz

Generalizing the work of Dysthe, assume

 $\eta(\mathbf{x},t) = \epsilon^3 \bar{\eta} + \epsilon B \mathsf{e}^{i\omega_0 t - ik_0 \mathbf{x}} + \epsilon^2 B_2 \mathsf{e}^{2(i\omega_0 t - ik_0 \mathbf{x})} + \epsilon^3 B_3 \mathsf{e}^{3(i\omega_0 t - ik_0 \mathbf{x})} + \dots + c.c.$

 $\phi(x,z,t) = \epsilon^2 \bar{\phi} + \epsilon A_1 e^{k_0 z + i\omega_0 t - ik_0 x} + \epsilon^2 A_2 e^{2(k_0 z + i\omega_0 t - ik_0 x)} + \epsilon^3 A_3 e^{3(k_0 z + i\omega_0 t - ik_0 x)} + \dots + c.c.$

Here

- $\epsilon = 2|a_0|k_0 \ll 1$ is the dimensionless wave steepness
- ► *a*⁰ represents a typical amplitude
- $\omega_0 > 0$ represents the frequency of the carrier wave
- $k_0 > 0$ represents the wave number of the carrier wave
- The A_j 's and $\overline{\phi}$ depend on $X = \epsilon x$, $Z = \epsilon z$, $T = \epsilon t$
- The B_j 's and $\bar{\eta}$ depend on X and T
- $\blacktriangleright \ \bar{\nu} = \epsilon^2 \nu$

Solution Ansatz

Generalizing the work of Dysthe, assume

 $\eta(\mathbf{x},t) = \epsilon^3 \bar{\eta} + \epsilon B \mathbf{e}^{i\omega_0 t - ik_0 \mathbf{x}} + \epsilon^2 B_2 \mathbf{e}^{2(i\omega_0 t - ik_0 \mathbf{x})} + \epsilon^3 B_3 \mathbf{e}^{3(i\omega_0 t - ik_0 \mathbf{x})} + \dots + c.c.$

 $\phi(x,z,t) = \epsilon^2 \bar{\phi} + \epsilon A_1 \mathbf{e}^{k_0 z + i\omega_0 t - ik_0 x} + \epsilon^2 A_2 \mathbf{e}^{2(k_0 z + i\omega_0 t - ik_0 x)} + \epsilon^3 A_3 \mathbf{e}^{3(k_0 z + i\omega_0 t - ik_0 x)} + \dots + c.c.$

Here

- $\epsilon = 2|a_0|k_0 \ll 1$ is the dimensionless wave steepness
- ► *a*⁰ represents a typical amplitude
- $\omega_0 > 0$ represents the frequency of the carrier wave
- $k_0 > 0$ represents the wave number of the carrier wave
- The A_j 's and $\overline{\phi}$ depend on $X = \epsilon x$, $Z = \epsilon z$, $T = \epsilon t$
- The B_j 's and $\bar{\eta}$ depend on X and T
- $\blacktriangleright \ \bar{\nu} = \epsilon^2 \nu$

Dissipative NLS Equation

At $\mathcal{O}(\epsilon^3)$, this leads to the dissipative NLS (dNLS) equation (studied by Segur *et al.*, (2005), derived by Dias *et al.*, (2008)).

$$2i\omega_0\left(B_T + \frac{g}{2\omega_0}B_X\right) + \epsilon\left(-\frac{g}{4k_0}B_{XX} - 4gk_0^3|B|^2B + 4ik_0^2\omega_0\nu B\right) = 0$$

Dissipative NLS Equation

At $\mathcal{O}(\epsilon^3)$, this leads to the dissipative NLS (dNLS) equation (studied by Segur *et al.*, (2005), derived by Dias *et al.*, (2008)).

$$2i\omega_0\left(B_T + \frac{g}{2\omega_0}B_X\right) + \epsilon\left(-\frac{g}{4k_0}B_{XX} - 4gk_0^3|B|^2B + 4ik_0^2\omega_0\nu B\right) = 0$$

Properties

- dNLS does not preserve \mathcal{M}
- dNLS does not preserve \mathcal{P}
- dNLS preserves ω_m

Viscous Dysthe System

At $\mathcal{O}(\epsilon^4)$, this leads to the viscous Dysthe (vDysthe) system

$$2i\omega_0 \left(B_T + \frac{g}{2\omega_0} B_X \right) + \epsilon \left(\frac{g}{4k_0} B_{XX} + 4gk_0^3 |B|^2 B + 4ik_0^2 \omega_0 \nu B \right) \\ + \epsilon^2 \left(-i\frac{g}{8k_0^2} B_{XXX} + 2igk_0^2 B^2 B_X^* + 12igk_0^2 |B|^2 B_X + 2k_0 \omega_0 B \bar{\phi}_{0X} - 8k_0 \omega_0 \nu B_X \right) = 0, \text{ at } Z = 0$$

$$\bar{\phi}_{0Z} = 2\omega_0 \left(|B|^2 \right)_X, \quad \text{at } Z = 0$$

$$\bar{\phi}_{0XX} + \bar{\phi}_{0ZZ} = 0, \quad \text{for } -\infty < Z < 0$$

$$\bar{\phi}_{0Z} \rightarrow 0, \quad \text{as } Z \rightarrow -\infty$$

Change Variables

$$k_0 B(X, T) = \tilde{B}(\xi, \chi)$$
$$\frac{k_0^2}{\omega_0} A(X, Z, T) = \tilde{A}(\xi, \chi, \zeta)$$
$$\frac{k_0^2}{4\omega_0} \bar{\phi}_0(X, Z, T) = \tilde{\Phi}(\xi, \chi, \zeta)$$
$$\frac{4k_0^2}{\omega_0} \nu = \delta$$
$$\chi = \epsilon k_0 X$$
$$\xi = \omega_0 T - 2k_0 X$$
$$\zeta = k_0 Z$$

The Dimensionless Viscous Dysthe System

$$iB_{\chi}+B_{\xi\xi}+4|B|^2B+i\delta B+\epsilon\Big(-8iB^2B_{\xi}^*-32i|B|^2B_{\xi}-16B\Phi_{\xi}+5\delta B_{\xi}\Big)=0, \quad \text{ at } \zeta=0$$

$$\begin{split} \Phi_{\zeta} &= - \left(|B|^2 \right)_{\xi}, \qquad \text{at } \zeta = 0 \\ 4 \Phi_{\xi\xi} + \Phi_{\zeta\zeta} &= 0, \qquad \text{for} - \infty < \zeta < 0 \\ \Phi_{\zeta} \to 0, \qquad \text{as } \zeta \to -\infty \end{split}$$

The Dimensionless Viscous Dysthe System

$$iB_{\chi}+B_{\xi\xi}+4|B|^2B+i\delta B+\epsilon\left(-8iB^2B_{\xi}^*-32i|B|^2B_{\xi}-16B\Phi_{\xi}+5\delta B_{\xi}\right)=0, \quad \text{ at } \zeta=0$$

$$\begin{split} \Phi_{\zeta} = -\left(|B|^2\right)_{\xi}, & \text{at } \zeta = 0\\ 4\Phi_{\xi\xi} + \Phi_{\zeta\zeta} = 0, & \text{for} - \infty < \zeta < 0\\ \Phi_{\zeta} \to 0, & \text{as } \zeta \to -\infty \end{split}$$

There is only one free parameter, δ , in this system.

Properties of the Viscous Dysthe System

The vDysthe system does not preserve \mathcal{M} nor \mathcal{P} .

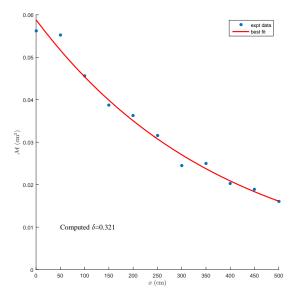
Properties of the Viscous Dysthe System

The vDysthe system does not preserve \mathcal{M} nor \mathcal{P} . The χ dependency of \mathcal{M} is given by

$$\mathcal{M}_{\chi} = -2\delta\mathcal{M} - 10rac{\delta}{\omega_0}\mathcal{P}$$

At leading order in ϵ , this relationship determines δ .

Determining δ



Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

$$\left(\omega_{m}\right)_{\chi} = \left(\frac{\mathcal{P}}{\mathcal{M}}\right)_{\chi} = -\frac{10\delta}{\omega_{0}\mathcal{M}^{2}}\left(\mathcal{M}\mathcal{Q} - \mathcal{P}^{2}\right) - \frac{16}{\omega_{0}}\frac{\mathcal{R}}{\mathcal{M}}$$

where

$$\mathcal{Q} = \frac{\epsilon^4 \omega_0^2}{k_0^2} \frac{1}{\epsilon \omega_0 L} \int_0^{\epsilon \omega_0 L} |B_{\xi}|^2 d\xi$$
$$\mathcal{R} = \frac{\epsilon^4 \omega_0^2}{k_0^2} \frac{1}{\epsilon \omega_0 L} \operatorname{Im} \left(\int_0^{\epsilon \omega_0 L} |B|^2 B^* B_{\xi\xi} d\xi \right)$$

Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

$$\left(\omega_{m}\right)_{\chi} = \left(\frac{\mathcal{P}}{\mathcal{M}}\right)_{\chi} = -\frac{10\delta}{\omega_{0}\mathcal{M}^{2}}\left(\mathcal{M}\mathcal{Q} - \mathcal{P}^{2}\right) - \frac{16}{\omega_{0}}\frac{\mathcal{R}}{\mathcal{M}}$$

where

$$\mathcal{Q} = \frac{\epsilon^4 \omega_0^2}{k_0^2} \frac{1}{\epsilon \omega_0 L} \int_0^{\epsilon \omega_0 L} |B_{\xi}|^2 d\xi$$
$$\mathcal{R} = \frac{\epsilon^4 \omega_0^2}{k_0^2} \frac{1}{\epsilon \omega_0 L} \operatorname{Im} \left(\int_0^{\epsilon \omega_0 L} |B|^2 B^* B_{\xi\xi} d\xi \right)$$

The Cauchy-Schwarz inequality establishes that $(\mathcal{MQ}-\mathcal{P}^2)\geq 0.$

Plane-Wave Solutions of the Viscous Dysthe System

Plane-Wave Solutions of the Viscous Dysthe System

The viscous Dysthe system admits plane-wave solutions given by

$$B(\xi, \chi) = B_0 \exp \left(w_r(\chi) + i w_i(\chi) \right)$$
$$\Phi(\xi, \chi) = 0$$

where

$$w_r(\chi) = -\delta \chi$$

 $w_i(\chi) = rac{2B_0^2}{\delta} \left(e^{-2\delta \chi} - 1
ight)$

and B_0 is a real parameter.

Stability of Plane-Wave Solutions

Consider perturbed solutions of the form

$$B_{\text{pert}}(\xi,\chi) = \left(B_0 + \mu u(\xi,\chi) + i\mu v(\xi,\chi) + \mathcal{O}(\mu^2)\right) \exp\left(w_r(\chi) + iw_i(\chi)\right)$$
$$\Phi_{\text{pert}}(\xi,\chi,\zeta) = 0 + \mu p(\xi,\chi,\zeta) + \mathcal{O}(\mu^2)$$

where

- μ is a small real parameter
- u, v, and p are real-valued functions

The non-transient linear stability problem gives (in physical coordinates)

$$egin{aligned} &\eta(x,t)=d_0\exp\left(i\omega_0t+if_0(x)-4ar{
u}rac{k_0^3}{\omega_0}x
ight)\ &+d_1\exp\left(i\omega_0(1-\epsilon q)t+if_1(x)-4ar{
u}rac{k_0^3}{\omega_0}(1-5\epsilon q)x
ight)\ &+d_2\exp\left(i\omega_0(1+\epsilon q)t+if_2(x)-4ar{
u}rac{k_0^3}{\omega_0}(1+5\epsilon q)x
ight)+c.c. \end{aligned}$$

where d_j are complex constants and f_j are real-valued functions.

The non-transient linear stability problem gives (in physical coordinates)

$$egin{aligned} &\eta(x,t)=d_0\exp\left(i\omega_0t+if_0(x)-4ar{
u}rac{k_0^3}{\omega_0}x
ight)\ &+d_1\exp\left(i\omega_0(1-\epsilon q)t+if_1(x)-4ar{
u}rac{k_0^3}{\omega_0}(1-5\epsilon q)x
ight)\ &+d_2\exp\left(i\omega_0(1+\epsilon q)t+if_2(x)-4ar{
u}rac{k_0^3}{\omega_0}(1+5\epsilon q)x
ight)+c.c. \end{aligned}$$

where d_j are complex constants and f_j are real-valued functions.

The amplitude of the carrier wave (the mode with frequency ω₀ > 0) decays exponentially.

The non-transient linear stability problem gives (in physical coordinates)

$$egin{aligned} &\eta(x,t)=d_0\exp\left(i\omega_0t+if_0(x)-4ar{
u}rac{k_0^3}{\omega_0}x
ight)\ &+d_1\exp\left(i\omega_0(1-\epsilon q)t+if_1(x)-4ar{
u}rac{k_0^3}{\omega_0}(1-5\epsilon q)x
ight)\ &+d_2\exp\left(i\omega_0(1+\epsilon q)t+if_2(x)-4ar{
u}rac{k_0^3}{\omega_0}(1+5\epsilon q)x
ight)+c.c. \end{aligned}$$

where d_j are complex constants and f_j are real-valued functions.

- ► The amplitude of the carrier wave (the mode with frequency ω₀ > 0) decays exponentially.
- ► The amplitude of the upper sideband (the mode with frequency ω₀ + ε|q|) decays more rapidly than the amplitude of the carrier wave.

The non-transient linear stability problem gives (in physical coordinates)

$$\begin{split} \eta(x,t) &= d_0 \exp\left(i\omega_0 t + if_0(x) - 4\bar{\nu}\frac{k_0^3}{\omega_0}x\right) \\ &+ d_1 \exp\left(i\omega_0(1-\epsilon q)t + if_1(x) - 4\bar{\nu}\frac{k_0^3}{\omega_0}(1-5\epsilon q)x\right) \\ &+ d_2 \exp\left(i\omega_0(1+\epsilon q)t + if_2(x) - 4\bar{\nu}\frac{k_0^3}{\omega_0}(1+5\epsilon q)x\right) + c.c. \end{split}$$

where d_j are complex constants and f_j are real-valued functions.

- ► The amplitude of the carrier wave (the mode with frequency ω₀ > 0) decays exponentially.
- ► The amplitude of the upper sideband (the mode with frequency ω₀ + ε|q|) decays more rapidly than the amplitude of the carrier wave.
- ► The amplitude of the lower sideband (ω₀ ε|q|) decays more slowly than does the amplitude of the carrier wave.

• The instability growth rate is $5\epsilon\delta|q|$.

- The instability growth rate is $5\epsilon\delta|q|$.
- The amplitudes of the second and third harmonics are

$$B_2 = k_0 B^2$$
$$B_3 = \frac{3}{2} k_0^2 B^3$$

- The instability growth rate is $5\epsilon\delta|q|$.
- The amplitudes of the second and third harmonics are

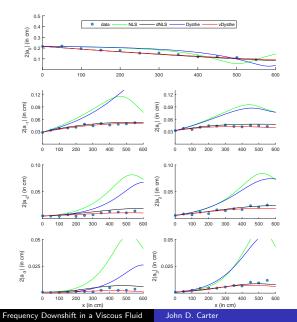
$$B_2 = k_0 B^2$$
$$B_3 = \frac{3}{2} k_0^2 B^3$$

This suggests that FD will be observed in the higher harmonics before it is observed in the fundamental.

Comparisons with Experiments

No FD Experiment Fourier Amplitudes

No FD Experiment Fourier Amplitudes



April 26, 2017

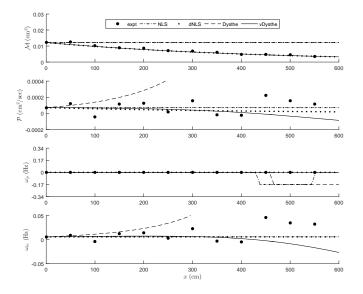
No FD Experiment Fourier Amplitudes

We quantitatively measure the differences between experimental data and PDE predictions via

diff_n =
$$\sum_{j=1}^{11} \left| 2 \left| a_n^{\text{expt}}(50j) \right| - 2 \left| a_n^{\text{PDE}}(50j) \right| \right|$$

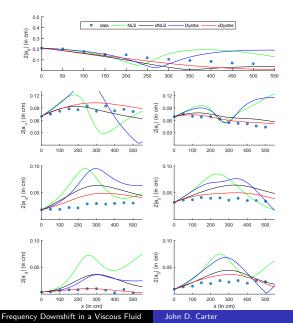
PDE	<i>n</i> = 0	n = -1	n = 1	<i>n</i> = −2	<i>n</i> = 2	<i>n</i> = -3	<i>n</i> = 3
NLS	0.536	0.782	0.652	0.621	0.585	0.393	0.423
Dysthe	0.158	0.055	0.065	0.085	0.040	0.051	0.022
dNLS	0.617	0.853	0.565	0.358	0.494	0.124	0.369
vDysthe	0.136	0.036	0.050	0.037	0.050	0.015	0.028

No FD Experiment Quantities



FD 1 Experiment Fourier Amplitudes

FD 1 Experiment Fourier Amplitudes



April 26, 2017

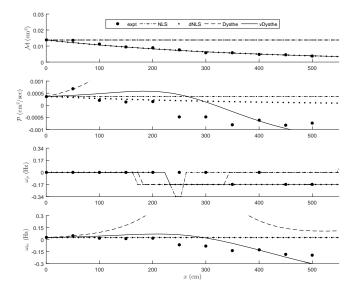
FD 1 Experiment Fourier Amplitudes

We quantitatively measure the differences between experimental data and PDE predictions via

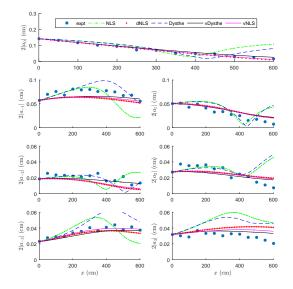
diff_n =
$$\sum_{j=1}^{10} \left| 2 \left| a_n^{\text{expt}}(50j) \right| - 2 \left| a_n^{\text{PDE}}(50j) \right| \right|$$

PDE	<i>n</i> = 0	n = -1	n = 1	<i>n</i> = −2	<i>n</i> = 2	<i>n</i> = -3	<i>n</i> = 3
NLS	0.583	0.293	0.298	0.309	0.215	0.245	0.395
Dysthe	0.480	0.092	0.095	0.244	0.175	0.162	0.106
dNLS	0.554	0.406	0.297	0.380	0.225	0.159	0.227
vDysthe	0.396	0.094	0.041	0.146	0.082	0.013	0.083

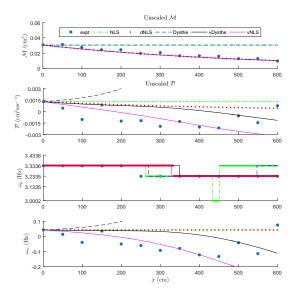
FD 1 Experiment Quantities



FD 2 Experiment Fourier Amplitudes



FD 2 Experiment Quantities



The dimensionless Gordon equation is given by

$$iB_{\chi} + B_{\xi\xi} + 4|B|^2B + \epsilon c_1 B(|B|^2)_{\xi} = 0$$

where c_1 is a real constant.

The dimensionless Gordon equation is given by

$$iB_{\chi} + B_{\xi\xi} + 4|B|^2B + \epsilon c_1 B(|B|^2)_{\xi} = 0$$

where c_1 is a real constant.

The (ad-hoc) dimensionless Schober & Islas equation is given by $iB_{\chi}+B_{\xi\xi}+4|B|^2B+i\delta B+\epsilon(-8iB^2B_{\xi}^*-32i|B|^2B_{\xi}-16B\Phi_{\xi}-ic_2B\Phi_{\xi})=0$

where c_2 is a real constant.

Using the norm

error =
$$\sum_{n=-11}^{11} \sum_{j=1}^{10} \left| \left| a_n^{\text{expt}}(50j) \right| - \left| a_n^{\text{PDE}}(50j) \right| \right|$$

we find

PDE	error		
NLS	0.1016		
Dysthe	0.0893		
dNLS	0.0492		
vDysthe	0.0459		
(optimal) Schober	0.0479		
(optimal) Gordon	0.0769		

Current Work

- Conducting additional experiments to test the robustness of the viscous Dysthe system
 - ▶ Paper on arXiv.org by Kimmoun *et al.* (2017)
- ► Generalizing the theory of Gramstad & Trulsen (2011)
- Adding in full dispersion/viscosity
- Generalizing the work of Dias et al. (2008)