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Waves I’d Like to Model

Photo from Shawn at Videezy.com.
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Modeling waves like those is too difficult for me because of:

I Wave breaking

I Air trapped in the fluid

I Vorticity

I Wind

I Interactions with the seafloor

I ...
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Waves I’m Going to Talk About Today

Photo from http://teachersinstitute.yale.edu/curriculum/units/2008/5/08.05.06.x.html.
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Waves I’m Going to Talk About Today

Two-dimensional modulated wave trains.
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Select Background
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Benjamin & Feir (1967) Theory and Experiments
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Benjamin-Feir Instability

 on January 5, 2017http://rspa.royalsocietypublishing.org/Downloaded from 
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Benjamin-Feir Instability
A time series that initially has the form

will evolve into

due to the Benjamin-Feir (or modulational) instability.
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Yuen, Lake, Rungaldier, & Ferguson (1977)
Experiments
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Frequency Downshifting
Nonlinear deep-water waves 61 

Wave 
height 

x=5 ft 
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FIGURE 5. Example of the long-time evolution of an initially uniform nonlinear wave train. 
Initial wave frequency is 3.6 Hz; oscillograph records shown on expanded time scale to display 
individual wave shapes ; wave shapes are not exact repetitions each modulation period because 
modulation period does not contain integral number of waves. 

components in the spectrum. The wave train appears to be in the process of losing its 
coherence and disintegrating. At a still later stage, however, as shown in the third 
spectrum, the energy has returned to the original frequency components (carrier, 
harmonics and side bands) of the initial wave train. The wave train has become almost 
fully demodulated, as can be seen in the corresponding wave form. 

This type of long-time behaviour of an unstable nonlinear system is unusual but not 
unknown. It was first discovered by Fermi, Pasta & Ulam (1940) during numerical 

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022112077001037
Downloaded from http:/www.cambridge.org/core. Universitetsbiblioteket i Bergen, on 05 Jan 2017 at 10:21:46, subject to the Cambridge Core terms of use, available at
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Segur et al. (2005) Theory and Experiments
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Basic Experimental Setup

Figure not to scale!

Gauge 1 Gauge 2 Gauge 3 Gauge 12

Experiments conducted by Diane Henderson (Penn State University).
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Experimental Measurements
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Quantities of Interest
I The spectral peak, ωp(x), is defined as the frequency of the

Fourier mode with largest magnitude at a location x

I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm(x) =
P(x)

M(x)

A wave train is said to exhibit frequency downshifting if ωm or
ωp decreases monotonically as it travels down the tank.
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Frequency Downshift

Frequency downshift in both the spectral peak and spectral mean senses.
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Frequency Downshift

Frequency downshift in the spectral peak sense.
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More Experimental Background

Segur et al. (2005) showed

I Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes

I FD is observed if the amplitude of the carrier wave is “large”
or if the sideband perturbations are “large enough”

I If FD occurred, then
I ωm decreased monotonically
I FD occurred in the higher harmonics before in the fundamental

Our goal is to provide a mathematical justification for these
observations without relying on wind or wave breaking effects.
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Theoretical Background
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Physical System

z=-h at the bottom

z=0 mean fluid level

h

λ

x

z

z=η(x,t), water depth

H

I η = η(x , t) represents the surface displacement

I φ = φ(x , z , t) represents the velocity potential
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Governing Equations

The equations for a two-dimensional, infinitely deep, inviscid,
irrotational, incompressible fluid are

φxx + φzz = 0, for −∞ < z < η(x , t)

ηt + φxηx − φz = 0, for z = η(x , t)

φt + gη +
1

2

(
φ2
x + φ2

z

)
= 0, for z = η(x , t)

φz → 0, as z → −∞

Frequency Downshift in a Viscous Fluid John D. Carter April 26, 2017



Approximate Models

In 1966, Zakharov assumed

η(x ,t)=εBeik0x−iω0t+ε2B2e2(ik0x−iω0t)+ε3B3e3(ik0x−iω0t)+···+c.c.

φ(x ,z,t)=εA1ek0z+ik0x−iω0t+ε2A2e2(k0z+ik0x−iω0t)+ε3A3e3(k0z+ik0x−iω0t)+···+c.c.

in order to study the evolution of modulated wave trains.

Here

I ε = 2|a0|k0 � 1 is the dimensionless wave steepness

I a0 represents a typical amplitude

I k0 represents the wave number of the carrier wave

I ω0 represents the frequency of the carrier wave

I The A’s depend on X = εx , Z = εz , and T = εt

I The B’s depend on X and T

I c .c . stands for complex conjugate
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NLS Equation

This led to the nonlinear Schrödinger (NLS) equation

2iω0

(
BT +

g

2ω0
BX

)
+ ε
( g

4k0
BXX + 4gk3

0 |B|2B
)

= 0

where
ω2

0 = gk0

B models the evolution of the red curves (the “envelope”).

t

η

± NLS Solution

Water surface
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NLS Equation

The nonlinear Schrödinger (NLS) equation

2iω0

(
BT +

g

2ω0
BX

)
+ ε
( g

4k0
BXX + 4gk3

0 |B|2B
)

= 0

Properties

I NLS preserves mass, M
I NLS preserves linear momentum, P
I NLS preserves the spectral mean, ωm
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Dysthe System

In 1979, Dysthe generalized Zakharov’s work by assuming

η(x ,t)=ε3η̄+εBeik0x−iω0t+ε2B2e2(ik0x−iω0t)+ε3B3e3(ik0x−iω0t)+···+c.c.

φ(x ,z,t)=ε2φ̄+εA1ek0z+ik0x−iω0t+ε2A2e2(k0z+ik0x−iω0t)+ε3A3e3(k0z+ik0x−iω0t)+···+c.c.
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Dysthe System

This led to what is now known as the Dysthe system

2iω0

(
BT + g

2ω0
BX

)
+ε

(
g

4k0
BXX +4gk3

0 |B|2B
)

+ε2

(
−i g

8k2
0
BXXX +2igk2

0B
2B∗

X +12igk2
0 |B|2BX +2k0ω0Bφ̄0X

)
=0, at Z=0

φ̄0Z=2ω0

(
|B|2
)

X

, at Z=0

φ̄0XX +φ̄0ZZ=0, for −∞<Z<0

φ̄0Z→0, as Z→−∞
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Dysthe System

Properties

I The Dysthe system preserves M
I The Dysthe system does not preserve P
I The Dysthe system does not preserve ωm
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Derivation of the Viscous Dysthe System
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Governing Equations with Weak Viscosity

Dias et al. (2008) derived a weakly viscous generalization of the
Euler equations

φxx + φzz = 0, for −∞ < z < η(x , t)

ηt + φxηx − φz = 2ν̄ηxx , for z = η(x , t)

φt + gη +
1

2

(
φ2
x + φ2

z

)
= −2ν̄φzz , for z = η(x , t)

φz → 0, as z → −∞

Where ν̄ is the kinematic viscosity.
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Governing Equations with Weak Viscosity

Wu et al. (2006) studied the following ad-hoc dissipative
generalization of the Euler equations

φxx + φzz = 0, for −∞ < z < η(x , t)

ηt + φxηx − φz = 0, for z = η(x , t)

φt + gη +
1

2

(
φ2
x + φ2

z

)
= −βφzz , for z = η(x , t)

φz → 0, as z → −∞

Where β is the coefficient of dissipation.
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Solution Ansatz

Generalizing the work of Dysthe, assume

η(x ,t)=ε3η̄+εBeiω0t−ik0x+ε2B2e2(iω0t−ik0x)+ε3B3e3(iω0t−ik0x)+···+c.c.

φ(x ,z,t)=ε2φ̄+εA1ek0z+iω0t−ik0x+ε2A2e2(k0z+iω0t−ik0x)+ε3A3e3(k0z+iω0t−ik0x)+···+c.c.

Here

I ε = 2|a0|k0 � 1 is the dimensionless wave steepness

I a0 represents a typical amplitude

I ω0 > 0 represents the frequency of the carrier wave

I k0 > 0 represents the wave number of the carrier wave

I The Aj ’s and φ̄ depend on X = εx , Z = εz , T = εt

I The Bj ’s and η̄ depend on X and T

I ν̄ = ε2ν
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Dissipative NLS Equation

At O(ε3), this leads to the dissipative NLS (dNLS) equation
(studied by Segur et al., (2005), derived by Dias et al., (2008)).

2iω0

(
BT +

g

2ω0
BX

)
+ ε
(
− g

4k0
BXX − 4gk3

0 |B|2B+4ik2
0ω0νB

)
= 0

Properties

I dNLS does not preserve M
I dNLS does not preserve P
I dNLS preserves ωm
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Viscous Dysthe System

At O(ε4), this leads to the viscous Dysthe (vDysthe) system

2iω0

(
BT + g

2ω0
BX

)
+ε

(
g

4k0
BXX +4gk3

0 |B|2B+4ik2
0ω0νB

)
+ε2

(
−i g

8k2
0
BXXX +2igk2

0B
2B∗

X +12igk2
0 |B|2BX +2k0ω0Bφ̄0X−8k0ω0νBX

)
=0, at Z=0

φ̄0Z=2ω0

(
|B|2
)

X
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Change Variables

k0B(X ,T ) = B̃(ξ, χ)

k2
0

ω0
A(X ,Z ,T ) = Ã(ξ, χ, ζ)

k2
0

4ω0
φ̄0(X ,Z ,T ) = Φ̃(ξ, χ, ζ)

4k2
0

ω0
ν = δ

χ = εk0X

ξ = ω0T − 2k0X

ζ = k0Z
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The Dimensionless Viscous Dysthe System

iBχ+Bξξ+4|B|2B+iδB+ε
(
−8iB2B∗

ξ−32i |B|2Bξ−16BΦξ+5δBξ

)
=0, at ζ=0

Φζ=−
(
|B|2
)
ξ

, at ζ=0

4Φξξ+Φζζ=0, for−∞<ζ<0

Φζ→0, as ζ→−∞

There is only one free parameter, δ, in this system.
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Properties of the Viscous Dysthe System

The vDysthe system does not preserve M nor P.

The χ dependency of M is given by

Mχ = −2δM− 10
δ

ω0
P

At leading order in ε, this relationship determines δ.
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Determining δ

0 50 100 150 200 250 300 350 400 450 500
x (cm)

0
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0.02

0.03

0.04

0.05

0.06

M
(c

m
2
)

Computed /=0.321

expt data
best fit
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Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

(
ωm

)
χ

=
( P
M

)
χ

= − 10δ

ω0M2

(
MQ−P2

)
− 16

ω0

R
M

where

Q =
ε4ω2

0

k2
0

1

εω0L

∫ εω0L

0
|Bξ|2dξ

R =
ε4ω2

0

k2
0

1

εω0L
Im
(∫ εω0L

0
|B|2B∗Bξξdξ

)

The Cauchy-Schwarz inequality establishes that
(MQ−P2) ≥ 0.
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ω0M2

(
MQ−P2

)
− 16
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ε4ω2

0
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Plane-Wave Solutions of the Viscous Dysthe System

The viscous Dysthe system admits plane-wave solutions given by

B(ξ, χ) = B0 exp
(
wr (χ) + iwi (χ)

)
Φ(ξ, χ) = 0

where
wr (χ) = −δχ

wi (χ) =
2B2

0

δ

(
e−2δχ − 1

)
and B0 is a real parameter.
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Stability of Plane-Wave Solutions

Consider perturbed solutions of the form

Bpert(ξ, χ) =
(
B0+µu(ξ, χ)+iµv(ξ, χ)+O(µ2)

)
exp

(
wr (χ)+iwi (χ)

)
Φpert(ξ, χ, ζ) = 0 + µp(ξ, χ, ζ) +O(µ2)

where

I µ is a small real parameter

I u, v , and p are real-valued functions
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

η(x , t) = d0 exp
(
iω0t + if0(x)− 4ν̄

k3
0

ω0
x
)

+ d1 exp
(
iω0(1− εq)t + if1(x)− 4ν̄

k3
0

ω0
(1− 5εq)x

)
+ d2 exp

(
iω0(1 + εq)t + if2(x)− 4ν̄

k3
0

ω0
(1 + 5εq)x

)
+ c .c.

where dj are complex constants and fj are real-valued functions.

I The amplitude of the carrier wave (the mode with frequency
ω0 > 0) decays exponentially.

I The amplitude of the upper sideband (the mode with
frequency ω0 + ε|q|) decays more rapidly than the amplitude
of the carrier wave.

I The amplitude of the lower sideband (ω0 − ε|q|) decays more
slowly than does the amplitude of the carrier wave.
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Plane-Wave Stability Observations

I The instability growth rate is 5εδ|q|.

I The amplitudes of the second and third harmonics are

B2 = k0B
2

B3 =
3

2
k2

0B
3

I This suggests that FD will be observed in the higher
harmonics before it is observed in the fundamental.
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Comparisons with Experiments
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No FD Experiment Fourier Amplitudes

0 100 200 300 400 500 600

2|
a

0
| (

in
 c

m
)

0.1

0.2

0.3

0.4

0.5

data NLS dNLS Dysthe vDysthe

0 100 200 300 400 500 600

2|
a

-1
| (

in
 c

m
)

0.03

0.06

0.09

0.12

0 100 200 300 400 500 600

2|
a

1
| (

in
 c

m
)

0.03

0.06

0.09

0.12

0 100 200 300 400 500 600

2|
a

-2
| (

in
 c

m
)

0.05

0.10

0 100 200 300 400 500 600

2|
a

2
| (

in
 c

m
)

0.05

0.10

x (in cm)
0 100 200 300 400 500 600

2|
a

-3
| (

in
 c

m
)

0.025

0.05

x (in cm)
0 100 200 300 400 500 600

2|
a

3
| (

in
 c

m
)

0.025

0.05

Frequency Downshift in a Viscous Fluid John D. Carter April 26, 2017



No FD Experiment Fourier Amplitudes

0 100 200 300 400 500 600
2|

a
0
| (

in
 c

m
)

0.1

0.2

0.3

0.4

0.5

data NLS dNLS Dysthe vDysthe

0 100 200 300 400 500 600

2|
a

-1
| (

in
 c

m
)

0.03

0.06

0.09

0.12

0 100 200 300 400 500 600

2|
a

1
| (

in
 c

m
)

0.03

0.06

0.09

0.12

0 100 200 300 400 500 600

2|
a

-2
| (

in
 c

m
)

0.05

0.10

0 100 200 300 400 500 600

2|
a

2
| (

in
 c

m
)

0.05

0.10

x (in cm)
0 100 200 300 400 500 600

2|
a

-3
| (

in
 c

m
)

0.025

0.05

x (in cm)
0 100 200 300 400 500 600

2|
a

3
| (

in
 c

m
)

0.025

0.05

Frequency Downshift in a Viscous Fluid John D. Carter April 26, 2017



No FD Experiment Fourier Amplitudes

We quantitatively measure the differences between experimental
data and PDE predictions via

diffn =
11∑
j=1

∣∣∣2∣∣aexpt
n (50j)

∣∣− 2
∣∣aPDE

n (50j)
∣∣∣∣∣

PDE n = 0 n = −1 n = 1 n = −2 n = 2 n = −3 n = 3

NLS 0.536 0.782 0.652 0.621 0.585 0.393 0.423
Dysthe 0.158 0.055 0.065 0.085 0.040 0.051 0.022
dNLS 0.617 0.853 0.565 0.358 0.494 0.124 0.369

vDysthe 0.136 0.036 0.050 0.037 0.050 0.015 0.028
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No FD Experiment Quantities
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FD 1 Experiment Fourier Amplitudes
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FD 1 Experiment Fourier Amplitudes
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FD 1 Experiment Fourier Amplitudes

We quantitatively measure the differences between experimental
data and PDE predictions via

diffn =
10∑
j=1

∣∣∣2∣∣aexpt
n (50j)

∣∣− 2
∣∣aPDE

n (50j)
∣∣∣∣∣

PDE n = 0 n = −1 n = 1 n = −2 n = 2 n = −3 n = 3

NLS 0.583 0.293 0.298 0.309 0.215 0.245 0.395
Dysthe 0.480 0.092 0.095 0.244 0.175 0.162 0.106
dNLS 0.554 0.406 0.297 0.380 0.225 0.159 0.227

vDysthe 0.396 0.094 0.041 0.146 0.082 0.013 0.083
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FD 1 Experiment Quantities
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FD 2 Experiment Fourier Amplitudes
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FD 2 Experiment Quantities
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Comparisons with Other FD Theories

The dimensionless Gordon equation is given by

iBχ + Bξξ + 4|B|2B+εc1B
(
|B|2

)
ξ

= 0

where c1 is a real constant.

The (ad-hoc) dimensionless Schober & Islas equation is given by

iBχ+Bξξ+4|B|2B+iδB+ε
(
−8iB2B∗ξ−32i |B|2Bξ−16BΦξ−ic2BΦξ

)
= 0

where c2 is a real constant.
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Comparisons with Other FD Theories

Using the norm

error =
11∑

n=−11

10∑
j=1

∣∣∣∣∣aexpt
n (50j)

∣∣− ∣∣aPDE
n (50j)

∣∣∣∣∣
we find

PDE error

NLS 0.1016
Dysthe 0.0893
dNLS 0.0492

vDysthe 0.0459
(optimal) Schober 0.0479
(optimal) Gordon 0.0769
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Current Work

I Conducting additional experiments to test the robustness of
the viscous Dysthe system

I Paper on arXiv.org by Kimmoun et al. (2017)

I Generalizing the theory of Gramstad & Trulsen (2011)

I Adding in full dispersion/viscosity

I Generalizing the work of Dias et al. (2008)
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